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Long-Term Aging of Oscillators 
Raymond L. Filler, Senior Member, IEEE, and John R. Vig, Fellow, IEEE 

Abstract- A search performed in connection with a recent 
review of the literature on oscillator aging has revealed very 
few reports on the long term (e.g., for periods greater than 
1 year) aging of oscillators. The purpose of this paper is to 
report aging results for more than 40 oscillators, from a variety 
of sources, for periods ranging from 1 year to more than 10 
years. The aging data were accumulated with an automated aging 
facility. The oscillators that have been on test include temperature 
compensated crystal oscillators (TCXO’s) and oven-controlled 
crystal oscillators (OCXO’s). The TCXO’s were maintained in 
a controlled temperature environment. Several of the TCXO’zs 
were built for a gun-launched sensor application and have been 
shown to be capable of surviving more than 30 000-g shock levels 
of 12 ms duration. The aging of these ruggedized TCXO’s are 
surprisingly good (<2 x 10P1’/d). The better OCXO’s exhibit 
long term aging of a few parts in lO”/d. 

I. INTRODUCTION 

A GING is the systematic variation of frequency with time 
when all environmental parameters are held constant [ 11. 

A search performed in connection with a recent review of 
the literature on oscillator aging [2] revealed very few reports 
on long term aging (e.g., for periods greater than 1 year.) 
The purpose of this paper is to report representative aging 
results from tests on more than 40 oscillators, from a variety 
of sources, for periods ranging from 1 year to more than 
10 years. (Since many of the commercial oscillators were 
purchased 10 or more years ago, the aging results reported 
on in the following may not have much relevance to current 
capabilities.) Some of the oscillators were not well behaved, 
i.e., some exhibited short term instabilities much greater than 
the aging per day. Oscillators that were not well behaved 
initially did not improve upon extended aging. Only the aging 
of well behaved oscillators are shown in Figs. l-32. 

The oscillators that have been on test include commercially 
available and prototype temperature compensated crystal os- 
cillators (TCXO’s), commercially available ovenized crystal 
oscillators (OCXO’s), prototype ovenized tactical miniature 
crystal oscillators (TMXO), [3] and prototype bulk-wave crys- 
tal resonators in specially built ovenized test oscillators [3]. 
All of the oscillators and prototype resonators were less than 
1 year old when started on aging. 

TCXO aging data were collected while the devices were 
maintained in a controlled temperature environment at +60° f 
1°C or at -40’ f 2’C. The ovenized oscillators were in 
laboratory ambient whenever data were being collected (the 
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Fig. 1. OCXO-5.0 MHz, 5th O/r, AT-cut, glass enclosed resonator. The 
slope of the reference line is +7.5 x 10-13/d. (Resonator: Bliley Electric 
Co.; Oscillator: Brightline, Inc.) 
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Fig. 2. OCXO-5.115 MHz, 5th O/T, AT-cut resonator. The slope of the 
reference line is -3.7 x 10-“/d. The thermal fuse failed during exposure 
to -4O’C. The oscillator was running but the heater was not on between 
the time marked “-4O“C” and the time marked “J&r On.” (Resonator: Bliley 
Electric Co.; Oscillator: Model 1001, Frequency & Time Systems.) 

Years 2’o 

Fig. 3. OCXO-5.0 MHz, 5th O/T, AT-cut resonator. The slope of the 
reference line is -2.2 x lo-‘l/d. (Resonator: Bliley Electric Co.; Oscillator: 
Model 1100, Frequency & Time Systems.) 

internal thermal control circuit maintained the resonators at 
a turnover temperature.) In several instances, oscillators were 
subjected to temperature changes; in some cases a return to 
room temperature, in other cases the oscillators were cooled 
to temperatures below -4O’C. 

U. S. Government work not protected by U. S. copyright 
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Fig. 4. OCXO-2.5 MHz, 25 mm diameter, SC-cut resonator. The slope of 
the reference line is +9.1 x 10-lz/d. (Resonator: Frequency Electronics, 

Fig. 8. OCXO-10 MHz, 3rd O/r, SC-cut resonator. The slope of the 
reference line is -3.2 x 10-‘r/d. (Resonator and Model 108llA oscillator: 

Inc.; Test oscillator: Bendix Corp.) Hewlett-Packard Co.) 
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Fig. 5. OCXO-2.5 MHz, 25 mm diameter, SC-cut resonator. The slope of 
the reference line is -3.4 x 10-“/d. (Resonator: Frequency Electronics, 
Inc.; Test oscillator: Bendix Corp.) 
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Fig. 9. OCXO-10 MHz, 3rd O/r. SC-cut resonator. The slope of the 
reference line is -2.9 x 1O-11/d The oven and oscillator was turned off 
for 3 d on 2 occasions. Once for exposure to -45°C and once for exposure 
to -45’C. (Resonator and model 2810007-l oscillator: Piezo Crystal Co.) 
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Fig. 6. OCXO-5.0 MHz, 3rd O/r, SC-cut resonator enclosed in a ce- 
ramic flatpack with sapphire covers. The slope of the reference line is 
-1.7 x lo-lo/d. The oscillator and oven was off between the time marked 
“Off’ and the time marked “Restart.” (Resonator: Frequency Electronics, Inc.; 
Test oscillator: Bendix Corp. 
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Fig. 7. OCX&lO MHz, 3rd O/r, SC-cut resonator. The slope of the 
reference line is +1.6 x lo-ll/d. (Resonator and Model 108llA oscillator: 
Hewlett-Packard Co.) 

Fig. 10. OCXO-10 MHz, 3rd O/r, SC-cut resonator. The slope of the 
reference line is +9.4 x 10-13/d. (Resonator and model 2810007-l oscillator: 
Piezo Crystal Co.) The oven and oscillator was turned off for 3 d on 2 
occasions. Once for exposure to -45’C and once for exposure to -40°C. 

Pk?zocfystalOcXo &?/1311993to0110411993) 
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Fig. 11. OCXO-10 MHZ, 3rd On, SC-cut resonator. l’he slope of the 
reference line is -8.6 x lo- 1 l/d. The oven and oscillator was turned off 
for 3 d on 2 occasions. Once for exposure to -45‘C and once for exposure 
to -4O’C. (Resonator and model 2810007-l oscillator: Piezo Crystal Co.) 
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Fig. 12. TMXO-10 MHZ, 3rd O/l’, SC-cW, ceramic flatpack er~closed 
resonator. The slope of the reberence line is -9.5 x 10-“/d. The oven 

Fig. 16. TCXO-Shcck resistant, 21.9375 MHz, fundamental mode, AT-cut, 

and oscillator were turned off for 3 d for exposure to -4O’C. (Resonator:’ 
ceramic flatpack enclosed resonator. The slope of the reference line is 

Army/GEND, Oscillator: Bendix Corp.) 
+4.9 x lo-l’/d. (Resonator: Army/GEND; Oscillator: RCA.) 
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Fig. 13. TMXO-10 MHz. 3rd O/T, SC-cut, ceramic flatpack enclosed 
resonator. The slope of the reference line is -3.4 x lo-l’/d. The oven 
and oscillator were turned off for 3 d for exposure to -40°C. (Resonator: 
Army/Gm, Oscillator: Bendix Corp.) 

ShcckResislad Remalorh aTCX0 (02/1&%62toOY01/1992)~ 
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Fig. 17. TCXO-Shcck resistant, 21.9375 MHz, fundamental mode, AT-cut, 
cemtnic flatpack enclosed resonator. The slope of the reference line is 
-3.4 x 10-“/d. (Resonator: Anny/GEND; Oscillator: RCA.) 
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Fig. 14. TMXO-10 MHz, 3rd On, SC-cut, ceramic fiatpack enclosed 
resonator. The slope of the reference. line is -7.7 x 10-“/d. The oven 

Fig. 18. TCXO-Shock resistant, 21.9375 MHz, fundamental mode, AT-cut, 

and oscillator were turned off for 3 d for exposure to -4O’C. (Resonator: 
ceramic flatpack enclosed resonator. The slope of the reference line is 

Army/Gm Oscillator: Bendix Corp.) 
+5.8 x 10-“/d. (Resonator: Army/GEND, Oscillator: RCA.) 
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Fig. 15. TCX&Shock resistant, 21.9375 MHz, fundamental mode, AT-cut, Fig. 19. 
ceramic flatpack enclosed resonator. The slope of the reference line is 

TCXOShock resistant, 21.9375 MHz, fundamental mode, AT-cut, 

-l-l.2 x 10-“/d. (Resonator: Atmy/GEFQ Oscillator: RCA.) 
ceramic flatpack enclosed resonator. The slope of the reference line is 
+I.6 x 10-“/d. (Resonator: Army/GEND, Oscillator: RCA.) 
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Fig. 20. TCXG-Shock resistant, 21.9375 MHz, fundamental mode, AT-cut, TCXG-3.2 h4Hz. The slope of the reference line is +4.6x lo-lo/d. 
cemmic flatpack enclosed resonator. The slope of the reference line is 

Fig. 24. 

+9.0 x lo-rl/d. (Resonator: Army/GEND; Oscillator: RCA.) 
The oscillator was at room temperature and not powered during the periods 
without data. (Oscillator: &ox.) 
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Fig. 21. TCXG-3.2 MHZ. The slope of the reference line is +3.2x 10-“/d. Fig. 25. TCXG-3.2 MHZ. The slope of the reference line is +1.7 x 10-‘/d. 
The oscillator was at room temperature and not powered during the periods The oscillator was at room temperature and not powered during the periods 
without data. (Oscillator: CTS.) without data. (Oscillator: Cinox.) 

CTS TCXO (OWUi988 to omwia] CINOXTCXO (0810411966l00413011992) 
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Fig. 22. TCXG-3.2 MHZ. The slope of the reference line is +7.8x 10-l’/d. Fig. 26. TCXG-3.2 MHz. The slope of the reference line is +1.3 x 10-‘/d. 
The oscillator was at room temperature and not powered during the periods The oscillator was at room temperature and not powered during the periods 
without data. (Oscillator: CTS.) without data. (Oscillator: Cinox.) 
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Fig. 23. TCXG-3.2 MHz. The slope of the reference line is -9.5 x lo-rl/d. Fig. 27. TCXG-3.2 MHz. The slope of the reference line is +1.4x lo-lo/d. 
The oscillator was at room temperature and not powered during the periods The oscillator was at room temperature and not powered during the periods 
without data. (Oscillator: CTS.) without data. (Oscillator: STC.) 
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STCTCXO (06'04/1966to043W92) 
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Fig. 28. TCXO-3.2 MHz. The slope of the reference line is -t-1.4x lo-IO/d. 
The oscillator was at room temperature and not powered during the periods 
without data. (Oscillator: STC.) 
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Fig. 29. TCXO-3.2 MHz. The slope of the reference line is -1.3 x lo-lo/d. 
The oscillator was at room temperature and not powered during the periods 
without data. (Oscillator: ‘sTC.) 

TFLTCXO ('M4'1966b67/27/t990) 

Fig. 30. TCXG3.2 MHz. The slope of the reference line is +4.7x lo-lo/d. 
(Oscillator: Tn.) 

The aging data were accumulated with an automated aging 
facility established in 1980 [4]. The frequency reference was 
an HP5601 cesium standard. Frequency was measured with an 
HP5345 counter from a single reading with a gate time of 100 
s, or an HP5335 or HP5370 counter from an average of 10 
readings each with a gate time of 10 s for a typical resolution 
of parts in loll. 

II. AGING GRAPHS 

The aging graphs show aging behaviors, and the effects 
of interruption and temperature change. On all of the aging 
graphs, the ordinate is the reduced frequency, y, in units of 
parts per billion (ppb), where 

Ah fk - fo &Z-Z- 
fo fo 

f0 is the first frequency, measured (at time to), and the abscissa 
is the elapsed time from t,. 

975. 

2 
E 

g 0. 
z 
=. 

-976. 
0.0 1.0 

Years 
2.0 3.0 

J 

Fig. 31. TCXs3.2 MHz. The slope of the reference line is +2.4 x 10-‘/d. 
The oscillator was at room temperature and not powered during the periods 
without data. (Oscillator: TFL.) 

lFlTCXO(96'64'WoCWiW) 
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Fig. 32. TCXO-3.2 MHz. The slope of the reference line is +1.8x lo-lo/d. 
The oscillator was at room temperature and not powered during the periods 
without data. (Oscillator: TFL.) 

On each graph there is a straight line included for reference. 
The slope and intercept of this straight line are determined 
from a least squares fit to the data between the days indicated. 
This straight line is not intended to indicate that the aging rate 
is constant, but is included to facilitate comparison of aging 
behaviors. 

Table I is a summary of the OCXO’s and Table II is a 
summary of the TCXO’s. That the TCXO’s generally exhibited 
a higher aging rate than the OCXO’s is probably due to the fact 
that TCXO’s use fundamental mode resonators, whereas the 
OCXO’s use third and fifth overtone resonators. Fundamental 
mode resonators (of the same frequency) have a higher surface 
to volume ratio, which results in larger frequency shifts due 
to the effects of surface related phenomena such as adsorption 
and desorption of contamination and changes at the electrodes. 
Also, since fundamental mode resonators have a larger mo- 
tional capacitance than overtone resonators, oscillators using 
fundamental mode resonators are more susceptible to changes 
in the oscillator circuitry (i.e., to changes in load reactance). 

III. LOGARITHMIC FIT 

The function y = A ln(Bt + 1) has been proposed as a 
candidate for extrapolation of the initial 30 d of aging data 
to periods in excess of 1 year [2], 151. For many oscillators, 
extrapolation of the logarithmic function obtained from fitting 
the first 30 d of data is a poor predictor of the subsequent aging. 
In general, for well-behaved oscillators that are maintained at a 
constant temperature, using a longer period to curve fit the data 
results in a logarithmic function that usually provides a better 
approximation to the actual long term aging. For example, 
as is shown in Fig. 33(a). the loearithmic function obtained 
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TABLE I 
fhh%MARY OF 0 VERSlZED &XLLA”RS 

Fig OSC. 
Manufact. cut o/r Package 

Res. 
Manufact. 

start stop Notes 

5 

10 

11 

12 

13 

14 

Blightlhe 

Frs 

Frs 
Bendix Test 

osc. 
Bendix Test 

OSC. 
Bendix Test 

OSC. 

HP 
HP 

5 

5 

5.115 

2.5 25 
mm 

2.5 25 
mm 

5.0 

10 
10 

10 

AT 5th 

AT 5th 

AT 5th 

SC 3rd 

SC 

SC 

SC 
SC 

Pie20 SC 

Pie20 10 SC 

Pie20 10 SC 

Bendix 
TMXO 

10 SC 

Bendix 
l-%4X0 10 SC 

Bendix 
TMXO 

10 SC 

3rd 

3rd 

3rd 

3rd 

3rd 

3rd 

3rd 

3rd 

3rd 

Glass 

Glass 

Glass 

Metal/glass 

MetaI/glass 

Ceramic/sapphire 

Metal/ceramic 

Metal/ceramic 

Metal/glass 

Metal/glass 

Metal/glass 

Ceramic 

Ceramic 

3rd Ceramic 

Bliley 

Bliley 

FBI 

FE1 

FE1 

HP 

HP 

Pie20 

Pie20 

Pie20 

GEND 

GEND 

GEND 

3/90 li93 

3l91 li93 

11/82 6185 
11/82 W85 

12/83 l/93 

12/83 

12/83 

1193 

l/93 

ll93 

l/93 

lP3 

Subjected to -4O’V 

Subjected to -4O’C; Heater 
failed (Oven off) 

Oven on continuously 

Oven on continuously 

Oven on continuously 

Oven off for a period 

Oven on continuously 

Oven on conthuously 
Subjected to -45OC and 
-40°c 
Subjected to -45’C and 
-40°c 

Subjected to -45’C and 
-40°c 

Subjected to -40°C 

Subjected to -4O’C 

Subjected to -4O’C 

TABLE II 
,%hlMARY OF TEWEiRAlWE COMPENSATED CRYSTAL (hJLLATORS 

Fig osc. Start stop Freq 
15 RCA m2 
16 RCA 2B2 
17 RCA 2182 

18 RCA 2182 
19 RCA 2m 
20 RCA m2 
il CTS W8 
22 CTS 8/M 
23 Cl-S 8/88 

24 CINOX 8/88 

25 CLNOX fm 
26 CINOX W8 

21 STC 8/88 
28 STC 8/88 

29 STC 8B8 

30 TFL S/88 

31 TFL us8 

32 TFL S/88 

5P2 

5192 
5192 
5/92 
5192 
4~2 

492 
4P2 

4P2 

4P2 

4P2 

4~2 

d/92 
4P2 

m 

4P2 

4P2 

22 

22 
22 

22 
22 
22 

3.2 
3.2 
3.2 

3.2 
3.2 
3.2 

3.2 
3.2 

3.2 
3.2 
3.2 

3.2 

Note k Aged continuously at +60°C. 
Note B: Aged at +60°C; stored at room tempera-, aged at -4OOC; 
stored at room temperature; then aged again at +6O*C. 

Note C: Aged at +60°C; stored at room temperature; &en aged again at 
+6O”C. 

Note D: Aged at +60°C; stored at room temperature; then aged again at 
-4OOC. 

from the first 30 d of aging data is a poor predictor of the 
long term aging. The logarithmic functions obtained from the 

initial 60 and 300 d (Fig. 33(b) and (c)) provide better and 
better ability to predict the actual aging. Fig. 34(a)-(c) shows 
a counterexample; extrapolation from the 60-d fit (Fig. 34(b)) 
deviates more from the actual long term aging data than does 
extrapolation from a 30-d fit (Fig. 34(a)), although the 300-d 
fit (Fig. 34(c)) matches the actual data well. 

A review of the aging graphs will show that “nonlogarith- 
mic” behavior seems to be the norm and not the exception. 
If the temperature changes or the power is interrupted, the 
situation is even worse. The parameters of the logarithmic 
aging model obtained from the first 30 d of data may be a 
good indicator of process control but are not very useful as a 
performance indicator during long term field use. 

IV. CONCLUSIONS 

It is difficult to make a general rule about long term aging 
performance prediction. All one can say is that oscillators 
which started out good remained good and the poor performers 
remained poor. It is important to note that aging direction can 
reverse in time. Ibis usually occurs early, but in one case it 
happened after 4.5 years (see Fig. 10). A logarithmic fit to 
the first 30 d is a poor indicator of long term performance 
especially when the oscillators experience large environmen- 
tal disturbances (such as a temperature change.) It is true, 
however, that the aging rate generally decreases with time, 
although in at least one case, it has been increasing for over 
eight years (see Fig. 11). A relatively safe upper bound on 
the frequency change is a linear extrapolation from the slope 
calculated from a logarithmic curve fit. However, due to the 
rapidly changing slope of the frequency versus time curve 
during early aging, selecting the anuronriate measurement 
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Fig, 33. (a) Logarithmic fit for Oscillator #3 using 30 d of data. The solid 
line is the actual data, the dashed line is the fitted function y = A ln( Bt + 1). 

Fig. 34. (a) Logarithmic fit for Oscillator #4 using 30 d of data. The solid 
line is the actual data, the dashed line is the fitted function y = 4 ln( Bt + 1). 

(b) Logarithmic fit for Oscillator #3 using 60 d of data. The solid line is the (b) Logarithmic fit for Oscillator #4 using 60 d of data. The solid line is the 
actual data, the dashed line is the fitted function 31 = Aln(Bt + 1). (c) actual data, the dashed line is the fitted function y = Aln(Bt + 1). (c) 
Logarithmic fit for Oscillator #3 using 300 d of data. The solid line is the 
actual data, the dashed line is the fitted function y = Aln(Bt + 1). 

Logarithmic fit for Oscillator #4 using 300 d of data. The solid line is the 
actual data, the dashed line is the fitted function y = Aln(Bt + 1). 

period is difficult. A compromise between length of test and 
confidence level is to use the last 30 d of a 100 d (reversal- 
free) aging test period for the logarithmic fit, calculate the 
slope at day 100, and use a linear extrapolation with that 
slope thereafter. 
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